Analysis of STAT1 Activation by Six FGFR3 Mutants Associated with Skeletal Dysplasia Undermines Dominant Role of STAT1 in FGFR3 Signaling in Cartilage

نویسندگان

  • Pavel Krejci
  • Lisa Salazar
  • Tamara A. Kashiwada
  • Katarina Chlebova
  • Alena Salasova
  • Leslie Michels Thompson
  • Vitezslav Bryja
  • Alois Kozubik
  • William R. Wilcox
چکیده

Activating mutations in FGFR3 tyrosine kinase cause several forms of human skeletal dysplasia. Although the mechanisms of FGFR3 action in cartilage are not completely understood, it is believed that the STAT1 transcription factor plays a central role in pathogenic FGFR3 signaling. Here, we analyzed STAT1 activation by the N540K, G380R, R248C, Y373C, K650M and K650E-FGFR3 mutants associated with skeletal dysplasias. In a cell-free kinase assay, only K650M and K650E-FGFR3 caused activatory STAT1(Y701) phosphorylation. Similarly, in RCS chondrocytes, HeLa, and 293T cellular environments, only K650M and K650E-FGFR3 caused strong STAT1 activation. Other FGFR3 mutants caused weak (HeLa) or no activation (293T and RCS). This contrasted with ERK MAP kinase activation, which was strongly induced by all six mutants and correlated with the inhibition of proliferation in RCS chondrocytes. Thus the ability to activate STAT1 appears restricted to the K650M and K650E-FGFR3 mutants, which however account for only a small minority of the FGFR3-related skeletal dysplasia cases. Other pathways such as ERK should therefore be considered as central to pathological FGFR3 signaling in cartilage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STAT1 and STAT3 do not participate in FGF-mediated growth arrest in chondrocytes.

Activating mutations in fibroblast growth factor receptor 3 (FGFR3) cause several human skeletal dysplasias as a result of attenuation of cartilage growth. It is believed that FGFR3 inhibits chondrocyte proliferation via activation of signal transducers and activators of transcription (STAT) proteins, although the exact mechanism of both STAT activation and STAT-mediated inhibition of chondrocy...

متن کامل

Fgfr3 Signaling in Achondroplasia: a Review

Achondroplasia and related chondrodysplasias are caused by heterozygous mutations of fibroblast growth factor receptor 3 (FGFR3). Virtually all patients with achondroplasia have the same mutation, and all of the FGFR3 mutations activate the FGFR3 signal transduction pathways. There is remarkable correlation between specific mutations and the severity of clinical phenotypes manifestations. The m...

متن کامل

Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, Stat activation, and phosphatidylinositol 3-kinase activation.

Fibroblast growth factor receptor 3 (FGFR3) mutations are frequently involved in human developmental disorders and cancer. Activation of FGFR3, through mutation or ligand stimulation, results in autophosphorylation of multiple tyrosine residues within the intracellular domain. To assess the importance of the six conserved tyrosine residues within the intracellular domain of FGFR3 for signaling,...

متن کامل

غربالگری غیر تهاجمی مارکر تومور S249C ژن FGFR3 به روش TETRA-ARMS-PCR در سلول‌های اپی‌تلیال ادراری در بدخیمی مثانه

Abstract Introduction: Genetic variation of FGFR3 gene is one of the factors affecting the bladder tumor. FGFR3 is a tyrosine kinase receptor, involved in controlling the cellular and angiogenesis cycle. This protein affects a variety of diseases and cancers and cartilage growth abnormalities. Regarding the high activity of fgfr3 mutations in more than 50% of primary tumors of bladder urethral...

متن کامل

Putting the brakes on chondrosarcoma

Primary cartilaginous tumors often arise from endochondral ossification, range from benign endochondroma and osteochondroma to malignant chondrosarcoma, and are notoriously resistant to chemotherapy or radiation. This urges development of novel therapeutic approaches particularly in chondrosarcoma, which is a terminal disease in more than 90% of unresectable cases [1]. Now research of Zhou and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008